
INHIBITION OF LYSOSOMAL GLYCOSIDASES BY MULTIMERIC PRESENTATIONS OF PYRROLIDINE-BASED IMINOSUGARS

Macarena Martínez-Bailén^a, <u>Ana T. Carmona</u>^a, Camilla Matassini^b, Francesca Cardona^b, Atsushi Kato^c, Inmaculada Robina^a, Antonio J. Moreno-Vargas^a

^a Department of Organic Chemistry, Faculty of Chemistry, University of Seville, 41012-Seville, Spain
^b Dipartimento di Chimica "Ugo Schiff", Università degli Studi di Firenze, 50019 Sesto Fiorentino (FI), Italy
^c Department of Hospital Pharmacy, University of Toyama, Toyama 930-0194, Japan

Multivalency is a phenomenon broadly studied in the field of carbohydrate-protein interactions [1]. Recently, this concept has been applied in the field of glycosidase inhibition as a promising alternative to prepare potent inhibitors for the treatment of diseases involving enzymatic hydrolysis of glycosidic bonds in carbohydrates [2].

The aim of the present work was to study if the multimeric presentation of pyrrolidinetriazole inhitopes onto several platforms influences the inhibition properties towards human lysosomal β -glucocerebrosidase and α -galactosidase A, enzymes involved in Gaucher and Fabry diseases. For the synthesis of the multivalent compounds we have used the Cu(I)-catalyzed azide-alkyne cycloaddition reaction (CuAAC) between several alkynyl functionalized scaffolds and three pairs of epimeric pyrrolidine derived azides.

Some of the compounds showed relevant inhibition towards α -galactosidase A and constitute the first examples of a remarkable multivalent effect in the inhibition of this enzyme.

[2] For reviews, see: (a) Gouin, S. G. *Chem. Eur. J.* **2014**, *20*, 11616-11628. (b) Zelli, R.; Longevial, J.-F.; Dumy, P.; Marra, A. *New J. Chem.* **2015**, *30*, 5050-5074.

^[1] Pieters, R. J. Org. Biomol. Chem., 2009, 7, 2013–2025.