A SHORT SEMISYNTHESIS OF HEDERAGONIC ACID BY C–H ACTIVATION

Christian Knittl-Frank, Martin Berger, Alberto Oppedisano, Nuno Maulide*

University of Vienna, Faculty of Chemistry, Department of Organic Chemistry,
Währinger Straße 38, 1090 Vienna, Austria
christian.knittl-frank@univie.ac.at

Polyhydroxylated oleananes are a vast family of naturally occurring triterpenoids with versatile biological activities.[1] A low commercial availability combined with high prices makes these molecules interesting targets in natural product synthesis. Oleanolic acid (1), a cheap commercially available material, is a practical starting point embodying the full carbon skeleton.

In a prior approach, the preparation of (2) was achieved in no less than 9 steps from (1), using stoichiometric palladium(II) and toxic lead(IV) reagents.[2]

Herein we present a modified, concise route to hederagonic acid (2). Our approach features several multi-step one-pot reactions, allowing a minimisation of the number of steps and reducing the preparative effort. Importantly, we achieve catalytic C–H functionalization at unusually low temperatures.[3] Hederagonic acid (2) was thus prepared in as little as 4 steps, resulting in the shortest semisynthesis of this oleanane to date.