SYNTHESIS OF 2,4-DIAMINOPYRIMIDINES AS POTENTIAL ANTIFOLATES

Amanda L. Rousseaua,b, Kamogelo R. Butsia,b, and Charles B. de Koninga

aMolecular Sciences Institute, School of Chemistry, University of the Witwatersrand, South Africa

bWITS Research Institute for Malaria (WRIM), University of the Witwatersrand, South Africa

Antifolates are a class of therapeutic agents that have potential application for cancer chemotherapy and for the treatment of parasitic and bacterial infections[1] In Africa, the parasite that causes malaria, \textit{P. falciparum}, is responsible for 93\% of malaria deaths worldwide[2] Substituted 2,4-diaminopyrimidines act as antifolates by targeting the enzyme dihydrofolate reductase (DHFR)[1]

We have previously prepared a series of dihydrotiazines that displayed potent activity against \textit{P. falciparum} DHFR (\textit{PfDHFR})[3] Herein we report our progress on the synthesis of a series of related substituted pyrimidines 1 in a five step process (Scheme 1) from commercially available alkyl and aryl esters.

\begin{center}
\textbf{Scheme 1:} i) MeCN, \textit{t}BuOK, IPA, 2-MeTHF; ii) \textit{t}BuOK, 2-MeTHF, 100W, 100°C; iii) HIO\textsubscript{3}, H\textsubscript{2}SO\textsubscript{4}/H\textsubscript{2}O; iv) Pd(PPh\textsubscript{3})Cl\textsubscript{2}, Cul, DIPEA, DMF; v) H\textsubscript{2}, Pd/C, EtOH
\end{center}

[1] J Feeney; \textit{Angew. Chem. Int. Ed.}, \textbf{2000}, \textit{39}, 290 - 312
