PARADIGMS OF COOPERATIVE VS. NON-COOPERATIVE LIGANDS IN METAL PINCER COMPLEXES IN (DE)HYDROGENATION REACTIONS

Jong-Hoo Choi, a Dennis Pingen, b Piet W. N. M. van Leeuwen, c Dieter Vogt, d Martin H. G. Prechtl a,e

a Dept. of Chemistry, University of Cologne, Germany
b Dept. of Chemistry, University of Konstanz, Germany
c LPCNO, INSA Toulouse, France
d Dept. of Techn. Chem., TU Dortmund, Germany
e Dept. of Natural Science and Environment, Roskilde University, 4000 Roskilde, Denmark

In our studies, we found on the one hand that catalysts with non-cooperative pincer ligands, like P(NMe)P, are active for dehydrogenation reactions, but on the other hand and in strong contrast cooperative ligands, like P(NH)P, are crucial for hydrogenation reactions. [1-3] Additionally, the choice of solvent has a strong influence on the product selectivity in certain cases. For example under polar protic conditions nitriles are converted into primary amines and under non-polar non-protic conditions nitriles are converted into homo-coupled imines, likewise nitriles can be coupled with amines to form unsymmetrical secondary imines. [2] Moreover, the amination of alcohols with NH₃ using catalysts with non-cooperative ligands are much superior to cooperative ligands. [3]

Acknowledgement: MIWF-NRW, AvH Foundation, Fulbright Foundation, DAAD, DFG and the COST Action “C-H Activation in Organic Synthesis (CHAOS)”.