RUTHENIUM-CATALYZED REDUCTIVE ARYLATION OF N-(2-PYRIDINYL)AMIDES WITH ISOPROPANOL AND ARYLBORONATE ESTERS

aOrganic Synthesis, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerpen (Belgium)
bJanssen Research & Development, Janssen Pharmaceutica NV, Turnhoutseweg 30, B-2340 Beerse (Belgium)

Amides are ubiquitous and easily accessible functional groups, making them versatile and convenient substrates for the synthesis of amines. The catalytic reduction of amides into \(\alpha \)-unbranched alkanamines has already received significant attention [1]. However, only a small number of strategies have been reported for the reductive functionalization of amides into \(\alpha \)-branched alkanamines. This reaction has a huge synthetic potential considering the carbonyl is replaced by both a carbon–carbon and a carbon–hydrogen bond. A number of pioneering reports have described such a reaction on secondary and tertiary amides. However, these reactions have some drawbacks, as they involve strongly nucleophilic and basic organometallic reactants (Li and Mg) in combination with air- and moisture-sensitive metal hydrides or silanes as reducing agents. Moreover, the amide sometimes also has to be pre-activated \textit{in situ} (e.g. Tf\(_2\)O). Amongst these reports on reductive functionalization, there are conspicuously few which describe the use of aryl nucleophiles, despite the fact that this gives rise to synthetically useful benzylamines [2]. Our group developed a novel method for the reductive arylation of amides based on a stable arylboron reactant and an alcohol, used both as reductant and solvent [3]. The method utilizes a Ru catalyst along with a Pyridine directing group (DG) on the amide nitrogen to allow reaction with the unreactive carbonyl. The DG can be easily introduced via e.g. reaction of carboxylic acid with PyNH\(_2\). The PyNH moiety in the N-Py 1-aryalkanamine product can be readily substituted with HCl giving 1-aryl-1-chloroalkane, concomitantly generating recyclable PyNH\(_2\).
