Bimetallic nanoparticles are characterized by a high catalytic activity that is attributable to the synergistic effect between the two metals that are involved1,2. Amongst other bimetallic particles, core-shell catalysts are particularly efficient because the electron charge transfer in the over layer is enhanced due to their specific architecture3,4. However, the control of the composition, the size and the shape of these core-shell nanoparticles remains challenging. Here, we propose an original supramolecular approach based on the use of spiropyran photo-responsive ligands and introduce light as an external and versatile control parameter to control the thickness of the shell. I will report on the synthesis of the photo-responsive ligands, the functionalization of palladium nanoparticles by ligand exchange, and on the formation of the core-shell systems.

Figure 1: Representation of the synthetic procedure of bimetallic core@shell nanoparticles controlled by light-responsive ligands.
