A 'TOP DOWN' APPROACH TO THE SYNTHESIS OF COMPLEX, DIVERSE LEAD-LIKE SCAFFOLDS

Ephraim A. Okolo, Adam Nelson, Stephen P. Marsden

School of Chemistry, University of Leeds, Leeds, LS2 9JT, United Kingdom
cmeao@leeds.ac.uk

Lead-oriented synthesis\(^1\) (LOS) is a concept that seeks to underscore the usefulness of developing new methodologies suitable for making a diverse library of highly three-dimensional small organic molecules with controlled molecular properties that qualify them to most likely serve as lead compounds or be in the 'lead-like' space. The 'top down' approach\(^2\) to LOS seeks to gain rapid access to complex polycyclic assemblies which can then be deconstructed or modified through ring addition, cleavage and expansion to generate multiple, diverse lead-like scaffolds. This strategy hopes to solve the problem of high attrition rates in drug discovery. A number of sp\(^3\)-rich scaffolds have been synthesized through this means from relatively cheap and simple materials using a novel oxidative dearomisation reaction as the complexity-generating step. Some of these scaffolds have been decorated along different vectors with exemplar medicinal chemistry capping groups, with their molecular properties assessed by LLAMA (Lead-likeness and Molecular Analysis, an in-house computational tool\(^3\)) prior to their decoration, and shall be tested for biological activity against a wide range of targets.

---

