COtab: A SIMPLE AND PRACTICAL SETUP FOR Pd-CATALYZED CARBONYLATION CHEMISTRY

<u>Hugo P. Collin</u>^{a,b,‡}, Wallace J. Reis^{a,c,‡}, Dennis U. Nielsen^{a,*}, Anders T. Lindhardt^d, Marcelo S. Valle^b, Rossimiriam P. Freitas^c, Troels Skrydstrup^{a,*}

^aDepartment of Chemistry, Interdisciplinary Nanoscience Center (iNANO), Carbon Dioxide Activation Center (CADIAC), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark

^bDepartamento de Ciências Naturais, Universidade Federal de São João del-Rei, 36301-160, São João del-Rei, MG, Brazil

^cDepartamento de Química, ICEx, UFMG, Av. Pres. Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG 31270-901, Brazil

^dDanish Technological Institute, Life Science Division, Kongsvang Allé 29, 8000 Aarhus C, Denmark

Bench-stable tablets (COtabs) have been developed for the rapid and safe production of carbon monoxide. The tablets can be made in less than five minutes without the use of a glovebox, and only require a stock solution of an amine base to liberate a specific quantity of CO. The COtabs were tested in five different carbonylation reactions and provided similar yields compared to literature procedures. Finally, a gram-scale reaction was conducted, as well as ¹³C-isotope labeling of the anti-cancer drug, olaparib. ^[1]