
SYNTHESIS OF NITRO DERIVATIVES AND FATTY ACID ESTERS OF RICINOLEIC ACID STARTING FROM CASTOR OIL

George Koutoulogenis, Christiana Mantzourani, George Kokotos

Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15771, Greece

Nitro-fatty acids (NFAs) are endogenously occurring lipid mediators exerting antiinflammatory effects and acting as anti-oxidants. 10-Nitro-oleic acid (CXA-10) has already entered clinical trials for the treatment of focal segmental glomerulosclerosis [1]. Anti-tumorigenic effects of NFAs (9- and 10-nitro oleic acid) on colorectal cancer cells in cell culture-based experiments and in a murine xenograft model have been reported [2]. On the other hand, Fatty Acid esters of Hydroxy Fatty Acids (FAHFAs) have been recently reported as a novel class of endogenous lipids presenting antidiabetic and anti-inflammatory activity [3]. The aim of our work was the synthesis of novel ricinoleic acid (RA, 12-R-hydroxyoleic acid) derivatives to evaluate their biological properties. RA can be easily isolated from castor oil, because it is the predominant fatty acid (up to 85-90%) to the existent triglycerides. In this work, we describe the synthesis of 9- and 10-nitro ricinoleic acid derivatives, as well as FAHFAs based on RA, using castor oil as the starting material. Methanolysis of castor oil, followed by saponification, provides RA 1, in 50% yield. Castor oil was treated with MeOH/c.H₂SO₄ and the resulting methyl ricinoleate 2 subsequently reacted with PhSeBr, HgCl₂, NaNO₂ and then with H₂O₂ to afford a mixture of 9- and 10-nitro regioisomers 3 and 4, which were separated by column chromatography. 12-Palmitic Acid ester of Ricinoleic Acid (6, 12-PARA) as well as the corresponding oleic acid derivative (7, 12-OARA) were synthesized after protecting the carboxyl group of RA with phenacyl bromide, coupling with palmitic acid or oleic acid, and finally deprotection with TBAF in THF. 9- and 10-nitro-oleic acid derivatives, as well as the corresponding methyl esters, have been also synthesized by slight modification of the published procedures [4] in order to compare their cytotoxic activities with those of the novel nitro-ricinoleic acid derivatives. The evaluation of the biological properties of these compounds is in progress.

Acknowledgements: The research presented was carried out within the framework of a Stavros Niarchos Foundation grant to the National and Kapodistrian University of Athens.

- [1] F. J. Schopfer et al, *Nitric Oxide* **2018**, 79, 31.
- [2] B. Kuhn et al, Biochem. Pharmacol. 2018, 155, 48.
- [3] M. M. Yore et al, Cell 2014, 159, 318.
- [4] M. Gorczynski et al, Org. Lett. 2006, 8, 11, 2306.