SYNTHESIS AND CHARACTERIZATION OF NON-PLANAR TETRAAZAPEROPYRENES (TAPPs) VIA BAY-SUBSTITUTION

Benjamin A. R. Günther,a Sebastian Höfener,b Ute Zschieschang,c Hubert Wadepohl,a Hagen Klauk,c Lutz H. Gadea

a Heidelberg University, INF 270, 69120 Heidelberg, Germany
b Karlsruhe Institute of Technology (KIT), P.O. Box 6980, 76049 Karlsruhe, Germany
c MPI for Solid State Research, Heisenbergstr.1, 70569 Stuttgart, Germany

To this day, the research field of organic electronics is hampered due to the ongoing problematics in the fabrication of n-type semiconductors and their stability under ambient conditions.[1] Amongst different approaches facing this problem, the class of Tetraazaperopyrenes (TAPPs) has proven to circumvent many of these issues, however, has been limited in its variability as only the ortho-position could be functionalized.[2] In this context, we present an alternative TAPP-synthesis that enabled the isolation of a series of bay-chlorinated TAPPs. A detailed study revealed that the introduction of chloride substituents at this position not only leads to a stabilization of the LUMO levels and an increase of the electron affinity but also to an unprecedented twist of the peropyrene core of ca. 30°. Despite their non-planarity, the herein investigated TAPPs could be employed as n-type semiconductors in organic field effect transistors (OFETs) exhibiting electron mobilities of 1-3x10⁻³ cm²V⁻¹s⁻¹. The mono- and dianionic reduced species were isolated and characterized by UV-Vis spectroscopy and EPR or NMR, respectively. Finally, a comparison of bay-and ortho-chlorinated TAPPs was conducted to further elaborate the influence of the different substitution patterns.