A MILD AND DIRECT SITE-SELECTIVE sp^2 C-H SILYLATION OF (POLY)AZINES

Yiting Gua,b, Yangyang Shena,b, Cayetana Zaratea,b, and Ruben Martina,b,c

a Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
b Universitat Rovira i Virgili, Departament de Química Analítica i Química Orgànica, c/Marcel·lí Domingo, 1, 43007 Tarragona, Spain
c ICREA, Passeig Lluïs Companys, 23, 08010, Barcelona, Spain

(Poly)azines rank amongst the most prevalent motifs in a myriad of natural products and compounds that display important biological properties.$^{[1]}$ Not surprisingly, chemists have recently been challenged to develop a series of C–H functionalization reactions that allows to control the site-selectivity profile of the protocol, thus allowing to access a series of polysubstituted azines from simple precursors.$^{[2]}$ As part of our interest in the functionalization of inert chemical bonds, we have recently discovered a base-mediated site-selective C-H silylation of (poly)azines.$^{[3]}$ This method is distinguished by its mild conditions and experimental ease – even in the context of late-stage functionalization –, while exhibiting orthogonal reactivity with classical silylation reactions.
