TETHER-DIRECTED REGIOSELECTIVE SYNTHESIS OF AN \textit{EQUATORIALFACE} BISADDUCT OF AZAFULLERENE USING \textit{CYCLO-[2]-OCTYLMALONATE}

Anastasios Stergioua, Karam Asadb, Andreas Kourtellarisb, Nikos Tagmatarchisa, and Nikos Chronakisb

aTheoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 11635 Athens, Greece
bDepartment of Chemistry, University of Cyprus, 2109 Nicosia, Cyprus

We have synthesized and fully characterized the first bisadduct of heterofullerene C\textsubscript{59}N, exploiting a tether-directed remote functionalization strategy. \textit{Cyclo-[2]-octylmalonate} tether was added on the C\textsubscript{59}N cage via a Mannich-type reaction, followed by an intramolecular iodine-catalyzed Bingel cyclopropanation reaction, which afforded a single bisadduct. 13C NMR spectroscopy unveiled the \textit{C\textsubscript{1}} symmetry of the formed bisadduct, while X-ray single crystal analysis revealed an \textit{equatorialface} addition pattern which is inherently chiral. The \textit{equatorialface} bisadduct has distinct absorption features, which constitute signatures for the identification of such a bisaddition pattern along the C\textsubscript{59}N cage.

Interestingly, the addition of the second malonate unit upshifts the LUMO level of the bisadduct above that of the parent (C\textsubscript{59}N)\textsubscript{2} by 0.08 eV. The latter is a remarkable change on the electron accepting properties of the C\textsubscript{59}N cage. Despite C\textsubscript{59}N is the most explored heterofullerene, it lacks designing strategies towards the regioselective synthesis of bisadducts with desired electronic properties. The regioselective synthesis of C\textsubscript{59}N bisadducts addresses the quest for molecular manipulation towards efficient fullerene-based electron acceptors. The influential benefits of this strategy could be further exploited to manipulate the band structure of heterofullerene cages by the integration of different addition patterns.