ENANTIOSELECTIVE SYNTHESIS OF N-BENZYLIC HETEROCYCLES: A NICKEL- AND PHOTOREDOX-DUAL CATALYSIS APPROACH

Cristofer Pezzettaa,b, Davide Bonifazib, and Robert W. M. Davidsona

aDr. Reddy’s Laboratories, 410 Science Park, Milton Road, Cambridge CB4 0PE, UK
bSchool of Chemistry, Cardiff University, Park Place Main Building, Cardiff CF10 3AT, UK

A dual nickel- and photoredox-catalysed modular approach for the preparation of enantioenriched N-benzylic heterocycles is presented. α-Heterocyclic carboxylic acids are reported as suitable substrates for a decarboxylative cross-coupling with aryl bromides,[1] affording products in modest to good enantioselectivity when a chiral pyridine-oxazoline (PyOx) ligand is employed.[2] The presence of a directing group on the heterocyclic moiety is shown to be beneficial, affording improved stereocontrol in a number of cases. Similar effects can be observed when running the reaction at lower temperatures. A range of drug-like products is thus easily obtained from commercial starting materials.

\[\text{Het}^{\text{N}}\text{CO}_2\text{H} + \text{Br}^{\text{Ar}} \xrightarrow{\text{NiBr}_2\text{DME, PyOx ligand}} \text{Het}^{\text{N}}\text{Ar}, \text{Cs}_2\text{CO}_3, \text{Acetone Blue LEDs light} \]
