
## UNPRECEDENTED MULTICOMPONENT ORGANOCATALYTIC SYNTHESIS OF PROPARGYLIC ESTERS VIA CO<sub>2</sub> ACTIVATION

<u>Martin Pauze</u><sup>a</sup>, Argyro T. Papastavrou<sup>b</sup>, Enrique Gómez-Bengoa<sup>a</sup>, Georgios C. Vougioukalakis<sup>b</sup>

 <sup>a</sup> Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV-EHU, 20018 Donostia-San Sebastian, Spain
<sup>b</sup> Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens GR-15771, Greece

Valorisation of  $CO_2$  is, in the actual society, a real challenge and any new method is valuable. We report a new method for the synthesis of propargylic ether. This three components method uses  $CO_2$ , organochlorides and terminal alkynes. The catalyst, 1,3-Di-tert-butyl-1H-imidazol-3-ium chloride, is widely-available, stable, and usage friendly N-heterocyclic carbene (NHC). The method allows using a wide range of organochloride and terminal alkynes, containing electron-withdrawing or electrondonating substituents, from low to good yields. Mechanism has been investigated by DFT calculations. Starting by the condensation of the NHC and the  $CO_2$  followed by the addition of the organochloride to finish with the attack of the alkyne. More investigation has been done by calculation for explaining the non-reactivity of certain substrates.



This paper: Unprecedented Multicomponent Organocatalytic Synthesis of Propargylic Esters via  $CO_2$  Activation, Argyro T. Papastavrou, Martin Pauze, Enrique Gómez-Bengoa, Georgios C. Vougioukalakis, *ChemCatCham*, 11. (**2019**)