NOVEL CHK1 INHIBITOR MU380 EXHIBITS SIGNIFICANT SINGLE-AGENT ACTIVITY IN TP53-MUTATED CHRONIC LYMPHOCYTIC LEUKEMIA CELLS

Prashant Khirsariyaa,b, Miroslav Boudnýc, Jana Zemanovác, Jan Vernerc, Martin Trbušekc, Kamil Paruchaa,b,*

aDepartment of Chemistry, CZ Openscreen, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
bCenter of Biomolecular and Cellular Engineering, International Clinical Research Center, St. Anne’s University Hospital, Pekařská 53, 656 91 Brno, Czech Republic
cDepartment of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Jihlavská 20, 625 00 Brno, Czech Republic

MU380 is a selective, potent and metabolically robust inhibitor of checkpoint kinase 1 (CHK1) [1]. Herein, we report enantioselective synthesis and anti-CLL single-agent activity of MU380 [2].

We first converted 1 to the Weinreb amide 2, whose treatment with deprotonated acetonitrile at low temperature afforded the required β-ketonitrile 3 with high optical purity (99% ee). Subsequent cyclization with 3-aminopyrazole in acetic acid afforded the desired pyrazolo[1,5-a]pyrimidine 4 in high yield (95%) and optical purity (96% ee). Of note, all three steps required extensive optimization of reaction conditions to avoid the loss of stereochemical integrity. Using the intermediate 4 in the synthetic sequence we previously reported for racemic MU380 [1] and final recrystallization from acetonitrile, we produced optically pure MU380 (> 99% ee) on gram scale (overall yield 33% over 10 steps).

MU380 manifested substantial single-agent activity in both $TP53$-wild type and $TP53$-mutated leukemia and lymphoma cell lines. Notably, MU380 also exhibited significant \textit{in vivo} activity in a xenotransplant mouse model where it efficiently suppressed growth of subcutaneous tumors generated from MEC-1 cells [2].
