
3,3' – DISUBSTITUTED THIOGALACTOSIDES AS INHIBITORS OF GALECTINS

Tomáš Vašíček^a, Vojtěch Spiwok,^b Vladimír Křen,^a and Pavla Bojarová^a

 ^aInstitute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, 14220 Prague 4, Czech Republic
^bInstitute of Chemical Technology, Prague, Technická 3, 16628 Prague 6, Czech Republic
tomas.vasicek@biomed.cas.cz

Human galectins are carbohydrate–binding proteins that play central roles in various pathologies including cancerogenesis, heart disorders, inflammation, and fibrosis.¹ Here we present a new straightforward approach towards the synthesis of small molecule inhibitors of galectin-1 and -3 based on 3,3'-disubstituted thiodigalactoside (TDG). The employed methodology is inspired by regioselective stannylene–mediated benzylation or alkylation² followed by Huisgen copper-catalyzed azide-alkyne cycloaddition reactions (CuAAC) yielding variously substituted TDGs (*Scheme 1*). Advantageously, the present protocols are based on one- or two-step reactions using an unprotected disaccharide (TDG), which is a great improvement compared to methods leading to similar compounds described so far.⁴

Scheme 1. New synthetic strategies towards 3,3'-disubstituted thiodigalactosides.

The affinity of all compounds was determined in a competitive ELISA assay with recombinant galectins. Molecular modelling of selected compounds revealed structure-affinity relationships between the studied compounds and galectins-1 and -3.

^[1] Lin, C.-H., Int. J. Mol. Sci. 2018, 19(2), 392

^[2] Iadonisi, A., J.Org.Chem. 2014, 79, 213

^[3] Zhu, L., Synthesis 2013, 45(17), 2372

^[4] Nillson, U., WO/2013/110704.