CARBON DIOXIDE-CATALYZED STEREOSELECTIVE CYANATION OF COUMARINS

<u>Tamal Roy</u>,^a Myungjo J. Kim,^{b,c} Yang Yang,^a Suyeon Kim,^{b,c} Gyumin Kang,^{b,c} Xinyi Ren,^a Anders Kadziola,^a Hee-Yoon Lee,^{b,*} Mu-Hyun Baik^{b,c,*} and Ji-Woong Lee^{a,*}

 ^a Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen Ø, 2100, Denmark
^b Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
^c Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea tamal@chem.ku.dk

We report an unprecedented and operationally simple carbon dioxide catalyzed conjugate 1,4-addition of cyanide to coumarins followed by ring-opening/protonation cascade to obtain β -cyano carboxylic acid derivatives. Presently, there is no convenient methods to access the nitrile derivative of coumarins despite their potential as a synthon to a number of amine functionalized building blocks. Carbon dioxide in combination with cyanide spontaneously forms cyanoformate and bicarbonate in presence of water, which controls the delivery of nucleophilic cyanide.^{1,2} Under optimized reaction conditions, CO₂ catalyzed cyanation of a number of 3-substituted coumarins gave the corresponding β -nitrile carbonyls in high chemo- and diastereo- selectivity, whereas poorer reactivities and selectivities were obtained under argon or nitrogen (scheme 1). We performed detailed experimental and computation analysis to suggest the catalytic role of CO₂, bicarbonate and carbonic acid as Lewis-and Brønsted acids to activate the coumarins. The general applicability of the current protocol was validated by large scale (5 g) synthesis of methyl 3-cyano-3-(2-hydroxyphenyl)-2-phenylpropanoate followed by preparation of biologically relevant heterocyclic compounds with ease.

Scheme 1. Hydrocyanation and ring-opening reaction of coumarin 1a and a comparison of reactivities of 1a under CO_2 (blue) and argon (red) as a function of time.

^[1] Murphy, L. J.; Robertson, K. N.; Harroun, S. G.; Brosseau, C. L.; Werner-Zwanziger, U.; Moilanen, J.; Tuononen, H. M.; Clyburne, J. A. C., Science 2014, 344, 75.

^[2] Hering, C.; von Langermann, J.; Schulz, A., Angew. Chem. Int. Ed. 2014, 53, 8282-8284.