
OXIDATIVE PHENOL COUPLING IN NATURAL PRODUCT SYNTHESIS

Julian Greb^a, Till Drennhaus^a and Jörg Pietruszka^{a,b*}

^aInstitute of Bioorganic Chemistry, Heinrich Heine University Düsseldorf, located at Forschungszentrum Jülich, Stetternicher Forst, 52426 Jülich, Germany ^bIBG1: Biotechnology, Forschungszentrum Jülich, 52426 Jülich, Germany

Among the broad variety of bioactive natural products – from which medicinal chemists draw their inspiration^[1] – biaryl natural products like the dimeric polyketides Rugulotrosin A and Gonytolide A exhibit remarkable bioactivities as well as an intriguing chemistry and structures.^[2,3] Even though increasing progress has been made towards the total synthesis of these structures over the last decades and in more recent years^[4,5], broadly applicable and facile methods for the reliable and selective construction of the highly crowded, chiral biaryl axis remain scarce and represent a major challenge for the synthetic community.

Arguably, the most step-economic and elegant method for the construction of these bonds is represented by - mimicking nature - a direct and atroposelective oxidative phenol coupling. Here, we will present our recent studies and findings in the application of this methodology in a total synthesis setting, discussing challenges, obstacles and opportunities.

^[1] D. J. Newman, G. M. Cragg, J. Nat. Prod. 2016, 79, 629-661;

^[2] K.-S. Masters, S. Bräse, Chem. Rev. 2012, 112, 3717-3776;

^[3] T. Wezeman, S. Bräse, K.-S. Masters, Nat. Prod. Rep. 2015, 32, 6-28;

^[4] G. Bringmann, T. Gulder, T. A. M. Gulder, M. Breuning, Chem. Rev. 2011, 111, 563-639;

^[5] M. C. Kozlowski, B. J. Morgan, E. C. Linton, Chem. Soc. Rev. 2009, 38, 3193-3207.