Ni-CATALYZED E-SELECTIVE ALKYNE SEMIHYDROGENATIONS

Benyapa Kaewmee, Niklas O. Thiel, and Johannes F. Teichert
Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 115, 10623 Berlin, Germany

The catalytic stereoselective semihydrogenation of alkynes into E - or Z-alkenes is an important transformation,[1] which is widely applied for the construction of natural products, fragrances, pharmaceuticals, and agrochemical products.[2] Many catalytic hydrogenations producing Z-alkenes from internal alkynes are established, e.g. the Lindlar reduction,[3] which predominantly proceed through syn hydrometalations as key stereodetermining step. On the other hand, the formation of E-alkenes via direct hydrogenation is still challenging.

Metal catalyzed E-selective semihydrogenations with Ru, Fe and Co have been reported recently.[4-7] However, these methods rely on noble metals or sophisticated ligand frameworks. We report on the development of an E-selective alkyne semihydrogenation based on a simple nickel catalyst consisting of commercially available of NiX_{2} ($\mathrm{X}=\mathrm{I}$ or OTf) and a simple bisphosphine ligand. The resulting protocol is thus practical, yielding high E-selectivity with insignificant overreduction to the alkane, and is showing a remarkable functional group tolerance.[8]

E-selective alkyne semihydrogenation

[^0]
[^0]: [1] J. G. de Vries and C. J. Elsevier, Handbook for Homogeneous Hydrogenation, Wiley-VCH, Weinheim, 2007, vol. 1, pp. 375-411.
 [2] A. Cirla, J. Mann, Nat. Prod. Rep., 2003, 20, 558.
 [3] H. Lindlar, Helv. Chim. Acta 1952, 35, 446.
 [4] K. Radkowski, B. Sundararaju, A. Fürstner, Angew. Chem. Int. Ed. 2013, 52, 355.
 [5] M. Leutzsch, L. M. Wolf, P. Gupta, M. Fuchs, W. Thiel, C. Farès, A. Fürstner, Angew. Chem. Int. Ed. 2015, 54, 12431.
 [6] D. Srimani, Y. Diskin-Posner, Y. Ben-David, D. Milstein, Angew. Chem. Int. Ed. 2013, 52, 14131.
 [7] K. Tokmic, A. R. Fout, J. Am. Chem. Soc. 2016, 138, 13700.
 [8] N. O. Thiel, B. Kaewmee, J. F. Teichert, manuscript submitted.

