COPPER CATALYZED ASYMMETRIC FORMATION OF ENANTIOENRICHED β-CF₃ ESTER & NITRILE DERIVATIVES

Pauline Poutrel, Xavier Pannecoucke, Philippe Jubault, and Thomas Poisson

Normandie Univ., INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000 Rouen, France

Due to its unique properties, the fluorine atom is nowadays widely used in medicinal chemistry [1]. That is why the synthesis of fluorinated moieties has become a considerable challenge. In particular, the trifluoromethyl group is one of the most common in drug structures. Although the construction of non-stereogenic C-CF₃ has been extensively studied [2], catalytic asymmetric methodologies for the synthesis of chiral -CF₃ centers at a distant position from a carbonyl group remain underdeveloped, with for instance catalytic asymmetric hydrogenations or the use of chiral N-heterocyclic carbene catalysts [3]. Consequently, we focused our work on the enantioselective reduction of β -CF₃ ester and nitrile derivatives by forming in-situ a chiral copper-hydride complex. This smooth methodology leads to the desired products with good yields and excellent selectivity.

 ^[1] a) Meanwell N. A., J. Med. Chem., 2018, 61, 5822–5880. b) Wang J., Sánchez-Roselló M., Aceña J. L., del Pozo C., Sorochinsky A. E., Fustero S., Soloshonok V. A., Liu H., Chem. Rev., 2014, 114, 2432–2506.

^[2] a) Furuya T., Kamlet A. S., Ritter T., *Nature*, **2011**, *473*, 470–477. b) Tomashenko O. A., Grushin V. V., *Chem. Rev.*, **2011**, *111*, 4475–4521.

^[3] a) For catalytic asymmetric hydrogenation: Dong K., Li Y., Wang Z., Ding K., Angew. Chem. Int. Ed., **2013**, 52, 14191-14195. b) For the use of chiral N-heterocyclic carbene catalysts: Chen J., Yuan P., Wang L., Huang Y., J. Am. Chem. Soc., **2017**, 139, 7045-7051.