SERINE 242^{5.46} AND ALANINE 222^{5.46} AS DETERMINANTS OF 5-HT_{2A/2C} SELECTIVITY

<u>Tomás M. Chávez</u>^a, Thirumal Yempala^a, Bruce K. Cassels^a, José Brea^b, María I. Loza^b, Douglas Matthies^c, and Gerald Zapata-Torres^c

 ^aDepartment of Chemistry, University of Chile, 7800003, Santiago, Chile
^bUSEF, CIMUS, Universidad de Santiago de Compostela, 15782, Santiago de Compostela, Spain
^cDepartment of Analytical and Inorganic Chemistry, University of Chile, 8380008, Santiago, Chile

The human 5-HT₂ receptor family consists of three subtypes, 5-HT_{2A}, 5-HT_{2B} and 5-HT_{2C}, that have high sequence identity in their orthosteric ligand-binding domain. Nevertheless, activation of each of these subtypes is associated with different pharmacological outcomes. 5-HT_{2A} agonists are generally viewed as potential psychedelic drugs, the 5-HT_{2B} receptor is considered an "antitarget" that leads to cardiac valvulopathy, and the 5-HT_{2C} receptor currently attracts interest as a target for appetite inhibitors. The simpler tryptamine and phenethylamine agonists of these receptors usually show little subtype selectivity, which is understandable considering the near-identity of their orthosteric binding pocket.

We have synthesized a small collection of phenethylamine analogs in which the benzene ring is replaced by a bulky dibenzo [b,d] furan moiety. Radioligand displacement and calcium mobilization studies indicated that our compounds had worse than micromolar affinity as 5-HT_{2A} receptor agonists, while their affinities at the 5- HT_{2C} receptor were at least an order of magnitude better and in one case a $K_i = 35$ nM was achieved, with full agonism and $EC_{50} = 222$ nM. Molecular docking studies of this compound at both receptor subtypes revealed the structural basis of its selectivity. In the 5-HT_{2C} receptor, the dibenzofuran ring system interacts strongly with the conserved Phe^{6.51} and Phe^{6.52} residues (the latter forming part of the toggle switch believed to initiate activation of monoamine GPCRs) and forms a hydrogen bond with Ser^{5.43}. In the 5-HT_{2A} receptor the replacement of $Ala^{5.46}$ by the bulkier Ser^{5.46} obliges the dibenzofuran to adopt a slightly different pose where its interaction with Phe^{6.52} is considerably weakened and the hydrogen bond is broken. We feel that this difference is a likely explanation of the 70-fold ratio of the affinities and potencies of this compound for both 5-HT₂ receptor subtypes, and that it should be exploited for the design, synthesis and assay of further potentially 5-HT_{2C}-selective ligands.