USING H₂ AS A HYDRIDE SOURCE – A CHEMO- AND REGIOSELECTIVE REDUCTIVE COUPLING REACTION/ALLYLIC REDUCTION

Lea T. Brechmann, Felix Pape, and Johannes F. Teichert

Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 115, 10623 Berlin, Germany

The transition metal catalyzed allylic substitution is a well-established methodology in organic synthesis.[1] A wide variety of nucleophiles (carbon- and heteroatom-based) can be employed for the generation of functionalized (mostly chiral) α -olefins. However, the use of hydrides as nucleophiles generated from hydrosilanes in a so-called *allylic reduction* has rarely been reported.[2,3]

Replacing the hydrosilane with dihydrogen (H_2) would render this process much more atom economic, but also poses several challenges for catalyst development: Next to regio- and stereoselectivity issues, chemoselectivity is most difficult to obtain, as the catalyst of choice would need to activate H_2 , but should not *hydrogenate* the allylic substitution product, namely the terminal alkene.

We now report on a copper(I)-catalyzed allylic reduction with a hydride nucleophile generated from H_2 . To further underline the applicability of this approach, we employed D_2 as easy-to-use deuteride source to obtain the desired products with excellent deuterium incorporation.[4] Furthermore, the extension towards a reductive coupling reaction to form skipped dienes as coupling products, which are not further reduced, is also presented.

^[1] a) U. Kazmaier, Transition Metal Catalyzed Enantioselective Allylic Substitution in Organic Synthesis, Springer, Berlin, 2012

^[2] For examples with Pd catalysts, see: J. Tsuji, T. Mandai, Synthesis 1995, 1.

^[3] a) T. N. T. Nguyen, N. O. Thiel, F. Pape, J. F. Teichert, Org. Lett. 2016, 18, 2455; b) T. N. T. Nguyen, N. O. Thiel, J. F. Teichert, Chem. Commun. 2017, 53, 11686.

^[4] F. Pape, L. T. Brechmann, J. F. Teichert, Chem. Eur. J. 2019, 25, 985.