OPTIMIZED SYNTHESIS OF THE BACTERIAL MAGIC SPOT (p)ppGpp CHEMOSENSOR PyDPA

Marco Minneci, Gabriele Conti and Sara Sattin

Università degli Studi di Milano, Department of Chemistry, Via Golgi, 19, 20133, Milan, Italy

The concept of antimicrobial resistance, namely the ability of bacterial strains to become insensitive to a previously effective antibiotic treatment, is nowadays well-known and it is rapidly becoming a societal concern. On the contrary, bacterial persistence [1] is still an elusive phenomenon where a dormant bacterial phenotype becomes just temporarily tolerant to drugs. Among the different working hypotheses on their formation mechanism, we decided to focus our attention on the survival signaling cascade called *Stringent Response*, that is initiated by the accumulation of guanosine tetra- or pentaphosphate ((p)ppGpp). During our quest to find small molecules able to either inhibit or revert this process, the necessity to selectively detect (p)ppGpp in solution became apparent. Fortunately, a specific and selective chemosensor, called PyDPA (**Fig. 1**), has already been designed and reported [2]. Here we present an optimized synthetic approach that allowed to improve the overall yield from 9% over 6 steps up to 67% over 7 steps [3].

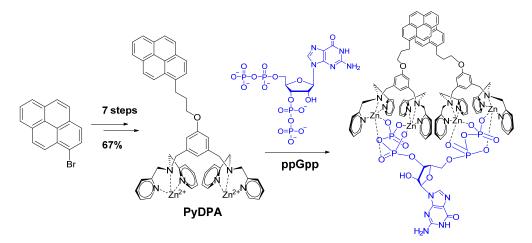


Fig. 1: Optimized synthesis of Chemosensor PyDPA and its complex with ppGpp

^[1] K. Gerdes and E. Maisonneuve, *Cell*, **2014**, *2*, 539-548

^[2] H. W. Rhee et al. J. Am. Chem. Soc, 2008, 130, 784-785

^[3] G. Conti, M. Minneci, S. Sattin, ChemBioChem, 2019, DOI: 10.1002/cbic.201900013