TERPHENYL PHOSPHANES: A NEW GENERATION OF LIGAND FOR PALLADIUM-CATALYZED AMINATION OF ARYL HALIDES WITH PRIMARY AND SECONDARY ARYL AMINES

Ji-cheng Shi, Fabin Zhou, Lixue Zhang, Jianhui Xu, and Zerun Lu

College of Chemistry, Maoming Technology Center of Organic Materials, Guangdong University of Petrochemical Technology, Maoming 525000, China

The palladium-catalysed amination of aryl halides has become a centrally important technology in the preparation of pharmaceutically relevant molecules. ${ }^{[1]}$ Unfortunately, this transformation still lacks generality, especially for highly ortho-functionalized substrates. ${ }^{[2]}$ A terphenyl phosphine ligand (TXPhos) has been developed, for which the effective function of biaryl phosphines to promote palladium-catalysed amination is guaranteed and in which the bulkiness of the flexible cyclohexyl substituent is further increased. This system has shown excellent performance in the palladium-catalysed arylation of both primary and secondary anilines. Moreover, combinations of highly functionalized substrates including both partners possessing ortho ester, acetyl, nitrile and nitro groups have been unprecedentedly realized in the arylation of primary anilines with aryl chlorides at $0.5 \mathrm{~mol} \%$ catalyst loading. Furthermore, for the first time, KOAc and NaOAc have been found to be effective bases and even are the best choice in the amination of 2-nitrochlorobenzene

A. Buchwald's strategy to control the favorable isomer ${ }^{[3]}$

C-bond Pd^{11} isomer $R^{1}=M e, R^{2}=O M e: 67$ $R^{1}=i \operatorname{Pr}, R^{2}=H: 100$

O-bond Pd" isomer 33 (BrettPhos) 0 (EPhos)
B. Tang's strategy ${ }^{[4]}$

Rotation-fixed
C. Our strategy
D. Preparation of TXPhos

[^0]
[^0]: [1] P. Ruiz-Castillo, S. L. Buchwald, Chem. Rev. 2016, 116, 12564-12649.
 [2] S. Lin, et al., Science 2018, 361, 569-576.

