SYNTHESIS, CHARACTERIZATION AND REACTIVITY OF Pt(II) PCP PINCER COMPLEXES

Matic Urlep ${ }^{\text {a }}$, Matic Lozinšek ${ }^{\text {a,b }}$, and Janez Cerkovnik ${ }^{\text {a }}$
${ }^{\text {a }}$ Faculty of Chemistry and Chemical Technology, University of Ljubljana, Slovenia
${ }^{\text {b }}$ Jozef Stefan Institute, Ljubljana, Slovenia

PCP pincer complexes were first synthesized by Moulton and Shaw in 1976. [1] Since then a plethora of new pincer complexes with various applications were reported. [2] We will present the chemistry of PCP pincer complex 1 and its analogues. Hydride 2 was synthesized by reduction of chlorido complex 1 with NaBH_{4} and its structure was determined by single-crystal X-Ray diffraction. In the presence of oxygen hydride 2 in solution slowly oxidizes to hydroxide 3 . Upon exposure to air hydroxide 3 readily uptakes CO_{2} from atmosphere to form a bicarbonato complex 4 whose crystal structure was also elucidated. Until now only one crystal structure with bicarbonate anion as a monodentate ligand on $\mathrm{Pt}(\mathrm{II})$ center has been reported. [3] Crystallization of PCP complexes from acidic chloride solutions leads to the formation of a trinuclear 24membered macrocyclic complex where $\left[\mathrm{PtCl}_{2}\right]$ moieties are bridged by phosphine arms of the pincer ligands.

[^0]
[^0]: [1] Moulton, C. J.; Shaw, B. L. Transition metal-carbon bonds. Part XLII. Complexes of nickel, palladium, platinum, rhodium and iridium with the tridentate ligand 2,6-bis[(di-tbutylphosphino)methyl]phenyl. J. Chem. Soc., Dalton Trans. 1976, 1020-1024.
 [2] Valdés, H.; García-Eleno, M. A.; Canseco-Gonzalez, D.; Morales-Morales, D. Recent Advances in Catalysis with Transition-Metal Pincer Compounds. ChemCatChem 2018, 10, 3136-3172.
 [3] Ito, M.; Ebihar, M.; Kawamura, T. Preparation and structure of $\left[\mathrm{PhPt}\left(\mathrm{OCO}_{2} \mathrm{H}\right)\left(\mathrm{PEt}_{3}\right)_{2}\right]$ and $\left[\mathrm{PhPt}\left(\mathrm{OH}_{2}\right)\left(\mathrm{PEt}_{3}\right)_{2}\right] \mathrm{BF}_{4}$. Inorg. Chim. Acta. 1994, 218, 199-202.

