BIOTRANSFORMATIONS EMPLOYING NITRILE HYDROLYZING ENZYMES TOWARDS THE ENANTIOSELECTIVE SYNTHESIS OF β-AMINO ACIDS

<u>Tatenda M. Mareya</u>, Lee V Coffey, Michael Kinsella, Caio R S Bragança, Trìona-Marie Dooley Cullinane, and Claire M. Lennon

Department of Science, Waterford Institute of Technology, Cork Road, Waterford X91 K0EK, Ireland

Nitrile hydrolysing enzymes continue to be of great interest particularly for their pharmaceutical applications^{1,2}. This work set out to utilise novel bacterial isolates containing nitrile-metabolising enzyme systems in the synthesis of a series of chiral β -amino acids with key goals to achieve high enantioselectivity and reaction efficiency.

Initial work focussed on further assessing the functional group tolerance and mechanistic action of bacterial isolate SET-1 which had been previously studied with β -hydroxynitriles by Coady et al^{3,4}. Ten model β -aminonitriles, structurally related to the β -hydroxynitriles previously studied were synthesised and evaluated. In biocatalytic studies on unprotected and *N*-protected aliphatic β -amino nitriles, bacterial isolate SET-1 was disappointingly poor. The acid yields and ee were extremely low, with the highest being 0.8% and 29% respectively at pH 7. Both steadily decreased as pH increased. Studies on the *N*-protected variants of 3-aminobutyronitrile gave more promising results, particularly with the *N*-Benzyl group which produced acid in 6% yield and 75% ee, and the *N*-Tosyl group which gave the overall best result of acid product 10% yield and >99% ee.

The final stage of the project has involved working with a purified enzyme exhibiting nitrilase activity. This has been screened extensively with the unprotected nitrile, 3-aminobutyronitrile. A maximum enantioselectivity of 30% was observed which is comparable to isolate SET-1 but marginally better yields were observed. The protected variants are next to be screened with the purified enzyme which should hopefully yield better results.

^[1] K. Ni, H. Wang, L. Zhao, M. Zhang, S. Zhang, Y. Ren and D. Wei, J. Biotechnol., 2013, 167, 433–440.

^[2] H. Fan, L. Chen, H. Sun, H. Wang, Y. Ren and D. Wei, Bioprocess Biosyst. Eng., 2017, 40, 1271–1281.

^[3] T. M. Coady, L. V. Coffey, C. O'Reilly, E. B. Owens and C. M. Lennon, J. Mol. Catal. B Enzym., 2013, 97, 150–155.

^[4] T. M. Coady, L. V. Coffey, C. O'Reilly and C. M. Lennon, European J. Org. Chem., 2015, 2015, 1108–1116.