DESIGN AND REGIOSELECTIVE FUNCTIONALIZATION OF NEW 2,4-SUBSTITUED PYRIDO[1',2':1,5]PYRAZOLO[3,4-d]PYRIMIDINES AND 2,4- SUBSTITUED PYRIDO[1',2':1,5]PYRAZOLO[4,3-d]PYRIMIDINES VIA Pd-CATALYZED SEQUENTIAL ARYLATION

A. Ejjoummany ${ }^{\text {a,b }}$, F. Buron ${ }^{\text {b }}$, A. El Hakmaoui ${ }^{\text {a }}$, G. Guillaumet ${ }^{\text {b }}$, M. Akssira ${ }^{\text {a }}$ and S. Routier ${ }^{\text {b }}$
${ }^{\text {a }}$ Laboratoire de Chimie Physique et Chimie Bioorganique, URA C 22, Pôle RéPAM, F.S.T.M, Université Hassan II de Casablanca, BP 146 Yasmina, 28800, Mohammedia, Maroc
${ }^{\mathrm{b}}$ Institut de Chimie Organique et Analytique, Université d’Orléans, UMR CNRS 7311, Orléans Cedex, France
abdelaziz.ejjoummany@etu.univ-orleans.fr

On the basis of our group's interest in rare heterocyclic structures and the results of our previous research ${ }^{[1]}$, we present in this work the design of original scaffold using a strategy of in situ activation ${ }^{[2]}$, and many types of reactions that have been developed so far.

Here we use the combination of in situ activation mediated by PyBroP ${ }^{[3]}$ and crosscoupling reaction to afford a library of various mono- and bis-arylated compounds. To design platform A 2, 4-disubstituted, we developed a fully chemoselective synthesis that allowed us to obtain A in 8 steps with an overall yield of 20%. We first use the combination of in situ activation mediated by PyBroP and cross-coupling reaction to afford a library of various monoarylated compounds \mathbf{B}. These are engaged in a second arylation via the Liebeskind-Srogl cross coupling reaction leading to rare 2,4-disubstituted-pyrido[1',2':1,5]pyrazolo[4,3-d]pyrimidine derivatives C.

[^0]
[^0]: [1] R. Belaroussi, A. El Bouakher, M. Marchivie, S. Massip, C. Jarry, A. El Hakmaoui, G. Guillaumet, S. Routier, M. Akssira, Synthesis 2013, 45, 2557-2566.
 [2] F. A. Kang, Z. Sui, W. V. Murray, Eur. J. Org. Chem. 2009, 461-479.
 [3] S. M. Li, J. Huang, G. J. Chen, F. S. Han, Chem. Commun. 2011, 47, 12840-12842.

