RHODIUM CATALYZED CYCLOPROPANATION WITH α-ALKYL-α-DIAZO ESTERS Christoph Zippel and Stefan Bräse a,b ^aInstitute of Organic Chemistry, Karlsruher Institure of Technology, Karlsruhe, Germany ^bInstitute of Toxicology and Genetics Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany Transition metal catalyzed decomposition of diazo compounds offers an easy, scalable, and versatile tool to access cyclopropanes.^[1] Even though, rhodium carboxylate complexes are the most attractive catalysts in terms of efficiency and accessibility for the construction of cyclopropane and cyclopropene rings, a major limitation remains their lack of selectivity over β -hydride migration.^[2] $$R^{1}O_{2}C$$ R^{2} R^{2} R^{3} R^{2} R^{3} R^{2} R^{3} R^{2} R^{3} R^{2} R^{3} R^{2} R^{3} R^{3} R^{2} R^{3} R^{3} R^{3} R^{3} R^{3} $R^{4}O_{2}C$ R^{2} R^{3} $R^{4}O_{2}C$ R^{2} R^{4} R^{4} R^{5} R^{5} R^{5} R^{5} R^{5} R^{5} R^{5} [2.2]Paracyclophane carboxylic acid and derivatives thereof are synthesized. The corresponding rhodium paddlewheel complex is applied in the cyclopropanation reaction of terminal, α , α -, and α , β -disubstituted alkenes with α -alkyl- α -diazo esters. The unique bulkiness of [2.2]paracyclophane allows for a chemoselective high yielding cyclopropanation to occur at room temperature, while its inherent planar chirality is currently investigated in enantioselective cyclopropanation reactions. ^[1] C. Ebner, E. M. Carreira, Chem. Rev. 2017, 117, 11651-11679. ^[2] T. L. Sunderland, J. F. Berry, *Dalton Trans.* **2016**, *45*, 50-55.