RHODIUM CATALYZED CYCLOPROPANATION WITH α-ALKYL-α-DIAZO ESTERS

Christoph Zippel and Stefan Bräse a,b

^aInstitute of Organic Chemistry, Karlsruher Institure of Technology, Karlsruhe, Germany

^bInstitute of Toxicology and Genetics Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany

Transition metal catalyzed decomposition of diazo compounds offers an easy, scalable, and versatile tool to access cyclopropanes.^[1] Even though, rhodium carboxylate complexes are the most attractive catalysts in terms of efficiency and accessibility for the construction of cyclopropane and cyclopropene rings, a major limitation remains their lack of selectivity over β -hydride migration.^[2]

$$R^{1}O_{2}C$$
 R^{2}
 R^{2}
 R^{3}
 R^{2}
 R^{3}
 R^{2}
 R^{3}
 R^{2}
 R^{3}
 R^{2}
 R^{3}
 R^{2}
 R^{3}
 R^{3}
 R^{2}
 R^{3}
 R^{3}
 R^{3}
 R^{3}
 R^{3}
 $R^{4}O_{2}C$
 R^{2}
 R^{3}
 $R^{4}O_{2}C$
 R^{2}
 R^{4}
 R^{4}
 R^{5}
 R^{5}
 R^{5}
 R^{5}
 R^{5}
 R^{5}
 R^{5}

[2.2]Paracyclophane carboxylic acid and derivatives thereof are synthesized. The corresponding rhodium paddlewheel complex is applied in the cyclopropanation reaction of terminal, α , α -, and α , β -disubstituted alkenes with α -alkyl- α -diazo esters. The unique bulkiness of [2.2]paracyclophane allows for a chemoselective high yielding cyclopropanation to occur at room temperature, while its inherent planar chirality is currently investigated in enantioselective cyclopropanation reactions.

^[1] C. Ebner, E. M. Carreira, Chem. Rev. 2017, 117, 11651-11679.

^[2] T. L. Sunderland, J. F. Berry, *Dalton Trans.* **2016**, *45*, 50-55.