
ENANTIOSELECTIVE PHOTOCHEMICAL ORGANOCASCADE CATALYSIS

Giandomenico Magagnano,^a Łukasz Woźniak,^a Paolo Melchiorre^{a,b,*}

^a Institute of Chemical Research of Catalonia (ICIQ), Spain ^b ICREA–Catalan Institution for Research and Advanced Studies, Barcelona gmagagnano@iciq.es

Cascade reactions are valuable tools for streamlining the synthesis of structurally complex chiral molecules in a single operation and from readily available substrates. Their combination with asymmetric aminocatalysis¹ has led to innovative techniques for the one-step enantioselective preparation of stereochemically dense molecules.² Recently, our laboratories found that the synthetic potential of aminocatalytic intermediates is not limited to the ground-state domain but can be expanded by exploiting their photochemical activity. For example, the photoexcitation of iminium ion can switch on novel catalytic functions that are unavailable to the ground-state strong SET oxidants, enabling the enantioselective β -functionalization of enals.³

Reported herein is a photochemical cascade process that combines the excited-state and ground-state reactivity of chiral organocatalytic intermediates. This strategy directly converts racemic cyclopropanols and α , β -unsaturated aldehydes into stereochemically dense cyclopentanols with exquisite stereoselectivity. Mechanistic investigations have enabled elucidating the origin of the stereoconvergence, which is governed by a kinetic resolution process.⁴

^[1] Barbas III, C. F. Angew. Chem. Int. Ed. 2008, 47, 42–47.

^[2] Enders, D.; Grondal, C.; Hüttl, M. R. M. Angew. Chem. Int. Ed. 2007, 46, 1570–1581.

^[3] Silvi, M.; Verrier, C.; Rey, Y. P.; Buzzetti, L.; Melchiorre, P. Nat. Chem. 2017, 9, 868-873.

^[4] Woźniak, Ł.; Magagnano, G.; Melchiorre, P. Angew. Chem. Int. Ed. 2018, 57, 1068-1072.