
IODANE-DIRECTED ORTHO C-H ALLYLATION AS GATEWAY TORWARDS ADDED VALUE CORES

<u>Wei Wen Chen</u>,^{a,b} Sébastien Lethu^c, Albert López de Moraga,^{a,b} Ana B. Cuenca,^b and Alexandr Shafir^a

^aIQAC-CSIC, c/Jordi Girona 20, 08034 Barcelona, Spain, weiqbl@cid.csic.es ^bInstitut Químic de Sarrià (IQS-URL), Via Augusta, 390, 08017 Barcelona, Spain ^cICIQ, Barcelona Institute of Science and Technology, 43007 Tarragona, Spain

Haloarenes represent a key class of organic reagents, mainly due to their potential as aryl-transfer agents. Also, the heavier iodo- and bromo derivatives proved to be interesting candidates as recognition elements in drug design. A renewed demand for diverse functionalized haloarenes has spurred the development of new synthetic methods to access this class of cores, including innovative metal-catalyzed *ortho* C-H halogenation. As a complementary strategy, a number of groups, including ours, have focused on the ability of the hypervalent organoiodine Ar-I(OAc)₂ to undergo iodane-directed *ortho* C-H functionalization [1,2] *via* iodonio-Claisen rearrangement, including the C-H allylation and propagylation reactions [3], albeit with the former limited to iodoarenes with electron-donating substituents [3].

In this context, we recently reported that the use of allylsilane bearing a 3-sulfone group allows to extend the allylation reaction to mildly electron-poor iodoarene cores [4]. We now show that this reactivity enhancement applies to a broader range of EWG-substituted allylsilanes, enabling expedient generation of a variety of *ortho*-allylated iodoarenes [5]. In addition, we describe the routes to access the requisite allylsilanes, and illustrate the synthetic potential of the newly formed allylated iodoarenes.

^[1] a) M. Ochiai, T. Ito, Y. Takaoka, Y. Masaki, J. Am. Chem. Soc. 1991, 113, 1319-1323

^[2] For a recent mini-review, see: A. Shafir, Tetrahedron Lett. 2016, 57, 2673–2682.

^[3] For recent reports, see: a) H. R. Khatri, J. Zhu, *Chem. Eur. J.* **2012**, *18*, 12232–12236; b) S. Izquierdo, S. Bouvet, Y. Wu, S. Molina, A. Shafir, *Chem. Eur. J.* **2018**, *24*, 15517-15521.

^[4] Y. Wu, S. Bouvet, S. Izquierdo, A. Shafir, Angew. Chem. Int. Ed. 2019, 58, 2617-2621.

^[5] Manuscript in preparation.