
STEREOSPECIFIC α-SIALYLATION BY SITE-SELECTIVE FLUORINATION

Taiki Hayashi, Gerald Kehr, Klaus Bergander and Ryan Gilmour

Institute for Organic Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149 Münster, Germany

Sialic Acids are ubiquitous on the cell surfaces in the body and are mainly found at the non-reducing end of complex, bioactive glycans. Sialic acid units are α -linked to the glycan core and, as a result, the development of methods for selective α -sialylation are urgently required for glycomics. It was envisaged that installing a fluorine substituent at the C3-position of sialic acids would help to overcome this long-standing synthetic challenge. Fluorine incorporation enhances the anomeric effect, favoring formation of β -sialyl donors whilst increasing the electrophilicity at the C2 position, enabling stereospecific sialylation via an S_N2-like reaction to provide α -sialosides. Further to regulating stereoselectivity, C3 fluorination provides a valuable ¹⁹F NMR probe and enhances hydrolytic stability.

Herein, we will report α -sialylation by site-selective fluorination and discuss the role of the C-F bond in facilitating stereochemical induction [1].

^[1] T. Hayashi, G. Kehr, K. Bergander, R. Gilmour, Angew. Chem. Int. Ed. 2019, 58, 3814.